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 Attractor Nets, Series I 
 
 

 

 
Systematic exploration of how things look if 
we use Sydney Lamb’s notation to represent 
high-level activity of large many-layered 
neural nets partitioned into 100s and 1000s 
of quasi-independent regions. 

 

I Introduction 
This document consists of working notes on a new approach to 
thinking about minds, both animal and human. As such these 
notes are primarily for the purpose of reminding me of what I 
have been thinking on these matters. They are not written, 
alas, in a way designed to convey these ideas to others. 
 
Thus, they are variously rambling, inconsistent, vague, 
incomplete, and, no doubt, wrong-headed in places.  
 
I would recommend that interested readers go through the notes 
in this order: 
 

1. “Simple Animal” (the third section of notes, III)  
2. “Lamb Notation” (the second section of notes, II) 
3. “Minds in Nets” (VII) 

 
While that is not the order in which I wrote the notes, the 
“Simple Animal” notes do a bit better job on the basic issues 
than the “Lamb Notation” section, which I had written first. 
Perhaps one should then read the rather long final section 
“Minds in Nets” (VII), which suggests some of the larger 
implications of this conception. If energy holds, I suggest 
the section on “Consciousness and Control” (VI). The section 
“Brief Notes” (V) is just that, and is dispensable.  
 
The section on “Assignment” (IV) discusses one particular 
construction in some (not entirely satisfactory) detail. 
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II Lamb Notation for Attractor Logic 
 
I’m exploring the notion that we can use Sydney Lamb’s 
relational network notion for linguistics to represent the 
logical structure of complex attractor landscapes – an 
attractor net. If we’re going to think about human cognition 
in terms of the complex dynamics of the brain, considered as a 
neural net having a phase space of very high dimensionality, 
we’re going to need a way of thinking about processes in a 
topology of thousands of attractors related to one another in 
complex ways. I think Lamb’s notation may be a way of 
representing the topology of such an attractor landscape. 
 
As is typically the case in such matters, we’ve got multiple 
levels of modeling/representation. In this case, two. The 
bottom level is the standard world of complex dynamics with 
its systems of equations which are used to analyze and build 
computer simulations of neural nets and to analyze neural and 
behavioral data. I have nothing to say about the details of 
this level. I’m interested in the upper level, where we’re 
trying to represent the relationship between the large number 
of attractors in a rich neural network. We can’t think about 
this structure by examining the underlying system of 
equations, nor even by examining such computer simulations as 
we are currently capable of running. 
 
I am imagining, in the large, that we have a neural net where 
we can make meaningful distinctions between microscopic, 
mesoscopic, and macroscopic processes. Roughly speaking, I see 
Lamb’s notation as a way to begin thinking about the 
relationship between mesoscopic and macroscopic processes. 
 
These notes are of a preliminary and very informal nature. I’m 
just trying things out to see what’s involved in doing this. 

Some Basics 
 
The following diagram depicts three neuro-functional areas 
(NFAs) that are reciprocally connected with one another as 
indicated. These NFAs may well be the mesoscopic patches of 
neuropil that Freeman has studied. These interconnections are 
massively parallel, as in the nervous system. 
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A C

B

 
 

Figure 1: Three NFAs 
 
Each NFA has many attractors arrayed in what is called an 
landscape. The state of each NFA is, however, dependent on the 
states of the NFAs to which it is connected. Let us imagine 
that when the system is “framed”,[1] each NFA is in some basin 
of attraction. What happens, then, when some NFA receives 
input that knocks it from its current attractor basin? 
Depending on the nature of the connections and so forth, some 
or all of the others may be disturbed as well. The system will 
meander until each NFA has settled into a net set of mutually 
compatible basins; that is, until the system is once again 
framed. The idea is to use a relational network as a way of 
representing the attractor basins and their mutual 
relationships, their compatibilities.  
 
The following diagram represents an OR relationship between 
attractors in A with respect to an attractor in B: 
 

                                                
1 "Equilibrium" is the term I had originally used, but it probably 
is not a good term to use. We are dealing with systems that 
typically operate far from (physical) equilibrium. It is not clear 
just what term to use, but the notion is that the NFAs are each in 
some particular basin of attraction. Perhaps we could say that the 
system has become framed or in-frame, where the term suggests a 
single frame from a motion picture at the moment the film is 
momentarily stopped at a frame actually projected onto the screen. 
Freeman thinks of consciousness in this way, where a “frame” of 
consciousness is a hemisphere-wide coherent state lasting between 
100 msec 200 msec. Consciousness is then a succession of such frames 
(see page 47 ff.).  
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b1

a1 a2

 
Figure 2: Logical OR 

 
Let us interpret that to mean that attractor b1 is compatible 
with either a1 or a2. It is inherent in the nature of the 
system, of course, that the attractors of an NFA are 
incompatible with one another. [Note that this diagram assumes 
reciprocal connectivity between NFAs A and B, as indicated in 
Figure 1.] 
 
Note that in this notation the nodes are relationships while 
the arcs between them are substantive entities [see note * 
starting on page 11]. This is quite different from most 
relational nets that have been used in the cognitive sciences; 
in these nets the nodes have indicated substantive entities 
while the arcs were relationships between those entities. In 
this interpretation of Lamb’s notation, the arcs represent 
attractors in some NFA. The relationships are logical 
operators and so embody interactions between NFAs. Given the 
nature of the underlying dynamical system, we might want to 
think of these operators as embodying some form of fuzzy 
logic. Given a sufficiently large system, such as a vertebrate 
nervous system, one might want to think of the attractor net 
as itself being a dynamical system, one at a higher order than 
that of the neurons themselves. 
 
Similarly, the following diagram means the b1 is compatible 
with either c1 or c3: 
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Figure 3: Another example of logical OR 
 
The following diagram illustrates the AND relation: 
 

B

A C

a1 c3

b1

 
 

Figure 4: Logical AND 
 
Let us interpret this to mean that b1 requires both a1 and c3.  
 
As it stands, these notions are not adequate, for we are 
interested in process, how these NFAs move from one state to 
another. What makes this tricky is that all these NFAs have 
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activity at all times, to some degree or another. Informally 
it seems to me that, at any given moment, the activity of some 
NFAs is more or less in the background while that in others is 
more or less in the foreground. Further, at any given 
interval, the states of some foreground or background NFAs are 
more or less fixed while the states of others are allowed to 
vary (until they reach frame with one another and with those 
whose state has been fixed).  
 
Continuing informally, let us assume that, at this level of 
analysis, we can think of the system as moving in discrete 
jumps, which we can call frames (the metaphor derives from 
motion pictures). This is compatible with some of Freeman’s 
recent remarks on consciousness. Thus the state at frame one 
is followed by some other state at frame two: 
 
 F1  F2 
 
Considering Figure 2 (an OR). Let us assume that the state of 
B is fixed by virtue of interactions not depicted in the above 
diagram. We have: 
 
 a1+b1  a2+b1  

OR  
a2+b1  a1+b1 

 
Obviously this can be simplified, perhaps to something like: 
 
 b1 | a1  a2  

OR  
b1 | a2  a1 

 
Where b1 is understood to provide the context for the 
transition following the vertical line. 
 
In the case of Figure 4 (AND) we have these possibilities: 
 
 b1 | a1  c3 
 
  b1 | c3  a1 
 

b1 | ai,cj  a1,c3  
(or perhaps: b1 | b1  a1,c3) 

 
 a1,c3 | a1,c3  b1  

(or perhaps: a1,c3 |bj  b1) 
 
One of the things we need to think about is the creation of a 
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new attractor in some NFA. This would come about when it has 
now attractor that is readily compatible with the set of 
attractors currently fixed in the NFAs with which it is 
interacting strongly at the moment. I have nothing to say 
about this, but it is obviously a very important issue.  

Paradigmatic Structure 
I’d now like to think about a more or less “real” example. I’m 
interested in paradigmatic structure, the type of structure 
built with what is often called the IS-A or ISA relation, e.g. 
a dog is a beast.  
 
Let us begin with the following diagram: 

C-dog

P-dog L-dog

 
Figure 5: The concept of a dog 

 
What it says, more or less, is that the conceptual dog (C-dog) 
can be aroused by either the perceptual dog (P-dog) or the 
lexical dog (L-dog). C-dog is an attractor in an NFA that is 
part of the systemic system (in the language of Hays 1981). P-
dog is an attractor in some NFA that is linked to a perceptual 
system – visual (one sees a dog), auditory (one hears a dog), 
olfactory (one smells a dog), and so forth. L-dog is an 
attractor in some NFA that is part of the language system; it 
is, more or less, a word. C-dog is thus neither a word nor a 
percept. It is a concept and, in this depiction, a rather 
minimal one at that. (At the moment I don’t want to worry 
about all the conceptual “stuff” that can be associated with 
C-dog.) This is a bit different from anything I’ve considered 
before but, for various hard-to-conceptualize reasons, I 
rather like it.  
 
Figure 6 shows just a bit of paradigmatic structure: 
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C-beast

C-dog

C-cat

C-horse

 
Figure 6: Beast 

This means that a C-beast can be aroused by a C-dog, a C-cat, 
or a C-horse (but not a C-seahorse). More needs to be said 
about this – in particular, are all these concepts attractors 
in the same NFA? – but I’ll leave it alone for the moment. I 
offer, for further reflection, Figure 7: 

C-beast

C-dog

L-beast

C-cat

C-horse

 
Figure 7: Beast, again 

 
In the next diagram, Figure 8, I depict the conceptual beagle. 
I have reasons for this peculiar construction, but I do not 
wish to consider them in detail here and now. 
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P-dog

P-beagle

P-long _ears

L-beagle

C-beagle

 
 

Figure 8: Beagle 
 
What I am asserting in the lower left is that the perception 
of a dog that is specifically a beagle entails the perception 
of a generic dog (P-dog) plus the obligatory (AND) perception 
of some feature or set of features that is specifically 
diagnostic of beagles, in this case represented by P-
long_ears. P-dog can be recognized in a single glance; but the 
recognition of specific kinds of dogs is more complex. This 
requires some inspection of the P-dog to acquire more 
information, thought not necessarily very much more. What ever 
the case, as with C-dog, the C-beagle can be aroused by either 
P-beagle or L-beagle.  
 
(I can further imagine that one might recognize particular 
individual dogs, regardless of breed, at a single glance. 
These are dogs that one knows quite well and are part of one’s 
social world. But that’s a different matter.) 
 
What emerges from this bit of thinking is that the 
relationship between words and their meanings is not so simple 
as most of us have imagined. For the most part, we have 
imagined a more or less self-contained world of concepts, 
which is linked to a more or less self-contained world of 
percepts on the one hand, and to a more or less self-contained 
world of words on the other. The representation of 
paradigmatic relationships between beagle, dog, and beast have 
been imagined to exist entirely within the worlds of concepts 
and percepts: a beagle IS-A dog IS-A beast. Each of these 
concepts is, in turn, linked to the domain of words by a 
simple and transparent relationship (with provisions of 
polysemy). I am less and less inclined to such a view. I think 
that the representation of paradigmatic relationships is all 
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but impossible without language.  
 

Comments 
 
Lamb and his followers have developed a fairly rich 
description of phonology, morphology, and syntax, expressed in 
this notation. Their account of semantics is rather less 
richly developed. This, of course, is true of linguistics in 
general. Phonology, morphology, and syntax all seem to involve 
a relatively circumscribed set of entities, which can, 
however, enter into an unbounded set of combinations. 
Semantics, by contrast, seems to involve a rather unbounded 
set of entities (which can, in turn, under into an unbounded 
set of combinations). In this situation phonology, morphology 
and syntax have seemed more amenable to analysis, both 
individually and collectively.  
 
And yet, language and meaning reside in pretty much the same 
kind of neural tissue. Neither has unbounded neural resources 
dedicated to it, though the neural resources are considerable. 
I thus believe that semantics is, in fact, almost as limited 
as the rest of language. But it needs to be understood 
properly. I believe that the framework Hays established in 
Cognitive Structures (1981) lays the basis for that. That 
framework, however, needs considerable reworking along lines 
suggested in part by Benzon and Hays (1988). The thrust of 
these current notes is that, by using Lamb’s notation as a way 
of representing the structure of a large attractor net (where 
the nets operates more or less as in Freeman 1999, 2000), we 
can make headway.  
 
As I’ve noted, Lamb has considerably more than a notation. 
He’s got a rich theory of language, and one that he has 
already begun to relate to brain structure. If I am correct, 
then we may be in a position to explicate that relationship in 
a more detailed way. For the scheme I’ve sketched above places 
fairly strong constraints on how one relates a relational net 
of conceptual and linguistic entities to the 2D topology of 
the neorcortex. 
 

Note 
 
*But of course, one can represent attractors as nodes by doing 
this: 
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A

B

b1

a1 a2

 
 
 
In this notation, we have two kinds of nodes, attractors and 
logical operators. The meaning or significance of an attractor 
is a function of the NFA to which it belongs; given my 
affection for Pribram’s neural holography, I tend to think of 
attractors as “neural holograms.” The arcs are all of the same 
type.  
 
This notation suggests, in turn, the possibility of doing 
this: 
 

A

B

b1

a1 a2 a3 a4 a4

b2

 
 
It’s all a matter of convenience. As Lamb is at considerable 
pains to argue, the only real “content” of a relational net is 
at the periphery, where it connects to the world. Internally, 
the net is nothing but relationships. In the case of a 
vertebrate nervous system, the net as a whole has four 
interfaces, input and output to the external world, and input 
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and output to the internal milieu. 
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III Attractor Nets: Toward a Simple Animal 
 
By attractor net (A-net) I mean the relationships among the 
attractors of a neural net. A net is said to be stressed if it 
is not at “equilibrium” or perhaps that should be “at frame.” 
In general, stress is applied to an NFA from outside. When it 
is at frame it is in one of its attractor basins.  
 
[Note: Recall the note at the bottom of page 4 about the term 
"equilibrium" being a misleading one.] 

Homogenous Attractor Nets 
An attractor net is said to be homogenous if all of its 
attractors are can be related to one another through logical 
‘or’. Thus: 
 

s1 s2 s3

0

a1
a2

a3

 
 

Figure 1A: Homogeneous Net 
 
In this diagram the rectangle is some neural net while the 
superimposed graph is a homogeneous attractor net. The zero 
node indicates “equilibrium” of “at frame.”[2] We can think of 
nodes s1, s2, and s3 as different patterns of stress on the 
network. Each pattern of stress is associated with a different 
path to frame, where the paths terminate at different points 
in the system’s state space. Those points are attractors, a1, 
a2, a3, with which I have labeled the arcs. The stressors are 
                                                
2 See footnote 1 above. 



Page 15 

linked to the frame state through an ‘or’ connector (in Lamb’s 
notation).  
 
What is stress in this context? Where the neurons are 
regulating the state of muscle fibers I am inclined to think 
of stress as the difference between the current state of the 
muscle fibers and the desired state. That is, it is error, in 
the sense that Powers’ uses the term in his control theory 
account of behavior. 
 
If I do that on the motor side, then, I would like to do it on 
the sensory side as well. In effect, sensory systems are 
designed to respond to the difference between expected 
sensations and actual sensations. The general role of 
preafference in the regulation of behavior is in favor of this 
view. It is not clear to me how far such preafference extends 
toward the periphery. I believe there is some evidence in the 
auditory system that the preafference extends to the inner 
ear. In the visual system I believe there are efferent fibers 
in the optic nerves, though I’m not sure whether or not anyone 
has good ideas about what those optic efferents are doing. I 
don’t have any notions on the other sensory systems. 
 
[Notice that how this notation transparently expresses Lamb’s 
observation that the only real “content” for such a network is 
at the periphery. Arc labels in the net are just a notational 
convenience that make it easier to read the diagram.]  
 
Having said all that, I propose to use a slightly different 
notation in these notes, as follows: 
 

neural

net

a1 a2 a3

0

 
 

Figure 1b: Homogeneous Net 
 
As a convenience we use nodes a1, a2, and a3 to represent 
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attractors. The arcs will be left unlabeled. 
 
The danger of this notation is that it temps one to reify 
attractors into physical things, like neurons, or collections 
of neurons, or collections of synapses scattered about in some 
population of neurons. This temptation must be avoided. 
 

Neural Interpretation, Mine & Lamb’s 
 
Now let us think about this at the neural level and compare 
this with what I take to be Lamb’s neural interpretation of 
his notation. We’ve got a meshwork of tightly interconnected 
neurons. The net can be said to be at frame when, in Hays’ 
formulation, inputs have been “accounted for.” The net will 
have arrived at one of its attractor states and so aroused a 
gestalt that “absorbs” the externally induced stress, the 
input. This, of course, is some particular pattern of activity 
in the net. Each attractor state corresponds to a different 
pattern of neural activity.  
 
An attractor node, then, represents some state, or set of 
states (the so-called attractor basin) of the neural net. The 
arcs connecting an A-node to the 0-node through the logical 
operator thus correspond to trajectories through the state 
space. Neither the attractors, the operators, nor the 
trajectories are physical things that one could discover 
though dissection and visual inspection. Rather, they the 
salient aspects of the topology of the net’s phase space. 
 
This is somewhat different from Lamb’s interpretation. As I’ve 
indicated above, Lamb uses labels on his arcs where I use 
attractor nodes, He clearly thinks of his nodes, the logical 
connectors (which he calls nections, from connection) as 
collections of neurons, with the arcs being collections of 
axons. He offers thumbnail calculations of the number of 
neurons per nection (based on Mountcastle’s work on cortical 
micro-anatomy), and so forth. Thus he uses his notation in a 
more concrete way than I am proposing. 
 
If one thinks about my proposal, however, one might wonder 
what the neurons in a homogeneous A-net are connected to, 
other than one or another. For, as I have defined it, a 
homogeneous A-net corresponds to a single Lamb or-nection, 
nothing more. These patterns of neural activity don’t seem to 
go anywhere, except to frame. I thus introduce the notion of a 
partitioned net, where each partition has an or-nection A-net. 
Partitions whose neurons are interconnected thus influence one 
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another’s states; there are dependencies among their 
attractors.  

Partitioned Nets 
An attractor network is said to be partitioned if its 
attractors are in two or more sets such that an attractor from 
each set is required for the network as a whole to be at 
frame. Given the way the notion of an attractor is defined, 
this would seem to be an odd thing to happen; indeed, it would 
seem to be impossible, by definition. We must remember, 
however, that real neural nets almost certainly have a small 
world topology. 
 
Every neuron is connected to each other neuron by at most only 
a small number of links. Some neurons are connected to one 
another directly (order 1); obviously, these neurons will have 
a strong influence on one another’s states. Other neurons will 
be connected through a single intermediary, making two links 
between them (order 2); still others through two 
intermediaries (order 3); and so on. Partitioning might arise 
in situations where two or more sets of neurons are strongly 
connected within the set through connections of order N or 
less while almost all connections between neurons in different 
sets are greater than order N. 
 
Let us begin with the following diagram: 
 

a1 a2 a3

0

a4 a5

 
 

Figure 2: Partioned Net 
 
We have two sets of attractors, a1, a2, a3, and a4, a5. Each 
of these sets is connected by an ‘or’ relation. The two sets 
are, in turn, connected by an ‘and’ relation. The notion is 
that the neurons that dominate attractors a1, a2, and a3 are 
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fairly closely coupled with one another, as are the neurons 
that dominate attractors a4 and a5. Neurons in these two sets 
are only weakly linked to neurons in one another, through 
relatively distant connections and through synapses with high 
thresholds. 
 
We might prefer to represent this situation like this: 
 

A B
a1 a2 a3 b1 b2

0

 
 

Figure 3: Partitions A and B 
 
Partitions A and B consist of networks where the neurons are 
tightly connected to one another within the nets. There are 
also connections between the neurons in the two nets, but 
these are looser. We might want to think of these partitions 
as being Freeman’s mesoscopic patches of neuropil. 
 
We must be careful, however, because the nervous system is, on 
the whole, a rather fluid system, with some flux at every time 
scale. The work on cortical plasticity, for example, clearly 
indicates that functional divisions between cortical regions 
are not rigidly fixed. They are plastic on a time scale of 
hours or more. We might want to think of things being more 
like this: 
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A B

a1 a2 a3 b1 b2

0

 
 

Figure 4: Fluid Partitions 
 

Modal Differentiation 
We know that the behavioral of neuropil varies according to 
biochemical ambiance. The following diagram shows attractors 
colored according to their biochemical affinity: 
 

a1 a2 a3

0

a4 a5

0

 
 

Figure 5: Attractors with different 
biochemical affinities 

 
The next diagram shows some ways one might elaborate on the 
notion of biochemical coloring: 
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0 0

 
 

Figure 6: Color variations 
 
On can imagine whatever interpretation of these colorings 
seems appropriate at this point. In thinking about biochemical 
coloring I have in mind, of course, Warren McCulloch’s idea of 
behavioral mode.  

A Simple Animal 
The nervous system of a simple animal is connected both to the 
external world and to the animal’s interior milieu: 
 

 
 

Figure 7: A Simple Animal 
 
Its neural net is divided into at least four partitions. Each 
partition has two classes of neurons. One is linked to the 
world outside the nervous system while the other is linked 
only to other neurons. The latter neurons may be linked to 
neurons within the partition, neurons in other partitions, or 
both. These partitions are as follows, identified by their 
external links: 
 

External Effectors: Produces effects in the external 
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world through coupling to the motor system. 
 
External Sensors: Senses the state of the external world 
through sensors of various types. 
 
Internal Effectors: Produces effects in the internal 
milieu by secreting chemicals or affecting the states of 
muscle fibers. 
 
Internal Sensors: Senses the internal milieu through 
appropriate sensors. 

 
The overall goal of the neural net is to keep its trajectory 
close to frame:  
 

0

Extermal

World

Internal

Milieu

 
 

Figure 8: Life in the Net 
 
This figure calls to mind some remarks that Powers has made 
about the top-level reference signal being zero. 
 
At this point, I suggest, we have just about what we need to 
model the behavior of a very simple animal, such as a jelly 
fish or a nematode. Much of the analytic and modeling burden 
would, in fact, devolve upon the properties of the underlying 
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neural net. Keep in mind that individual neurons are 
themselves quite complex and at the edge of our current 
analytic and modeling tools. 
 
I note that there is no explicit treatment of timing in the 
attractor net as presented so far. To be sure, there is the 
notion of a trajectory from stress to frame (and, I suppose, 
from one frame state to the next), but I submit that the 
timing of that evolution is to be handled entirely within 
details of the neural net. That timing need not be explicitly 
represented in the attractor net. 
 
It is not, however, obvious to me that the attractor net can 
be entirely free of explicit timing. In our account of the 
structures of natural intelligence, Hays and I talked of on-
blocks as primitive control devices. The notion is that, when 
some specified situation is sensed, an associated action is 
generated. I suspect we need at least that much explicit 
ordering at the level of attractor nets. I will leave that, 
however, as an exercise for a later time. 
 

Scaling Up 
What happens as the neural net gets larger and the animal 
evolves a more complex behavioral repertoire? Initially, the 
net can differentiate into more partitions and more modes. I 
suspect, however, that there are limits to how much growth can 
be accommodated that way. 
 
Beyond that point, further growth leads to overgrowth and 
subsequent confusion. At that point, the way forward probably 
involves having the entire system differentiate into different 
degrees (Benzon and Hays 1988). It is not immediately apparent 
what the means. It might mean that an attractor net of the 
second degree has, as its states, combinations of first degree 
attractors. We can leave that, as well, for reflection at a 
later time. 
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IV Assignment 
7.23.2003 
 
The notion of assignment is closely related to that of a 
category error. Chomsky’s famous example – colorless green 
ideas sleep furiously – is built on such errors. It makes no 
sense to assert that ideas are green, or that they can sleep. 
There is a mismatch here. The problem is that there are no 
assignment relations between the color domain and that of 
ideas, nor between that of such things as sleeping and that of 
ideas. Assignment, in this sense, gives cognition an 
ontological aspect. Assignment is about the “compatibilities” 
between objects in a domain.  

Homogeneous Nets (Review) 
We have already been introduced to the notion of a homogeneous 
net (above) as follows: 

s1 s2 s3

0

a1
a2

a3

 

Figure 1: Homogeneous Net 
 
This diagram can be taken to mean that, given stressors s1, 
s2, and s3, the net can achieve frame (0) by traveling 
trajectories to attractors a1, a2, and a3 respectively. This 
can be represented in a slightly more compact form as follows: 
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a1 a2 a3

0

 
Figure 2: Homogeneous Net 

 
As a convenience we use nodes a1, a2, and a3 to represent 
attractors. The arcs will be left unlabeled. 
 
In brief, all the attractors of a given net, or partition of a 
net, are said to be related to one another through the ‘or’ 
relation. They are mutually exclusive alternatives. 

Assignment, Concrete Object 
Classically, when Aristotle asserted that things consist of 
form and substance, he was making an assertion about 
assignment. Concrete objects consist of a substance, such as 
stone or wood or metal, etc., and a form, such as round, 
square, bear-shaped, etc. 
 
[Note: The formulations below are even more provisional than 
the rest of these notes.]  
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sensorimotor sensorimotor

red green
round

rect

0

sensorimotor

wood

stone

ball brick

systemic 

cognition

0 00

 
 

Figure 3: Assignment, concrete object 
 
Figure 3 illustrates an attractor net representation of some 
of the assignment structure for a concrete object. At the 
bottom of the diagram we have the sensorimotor (SMS)domains of 
color, shape, and material, respectively. At the top we have 
the systemic (SYS) cognitive domain of concrete objects. 
Assignment linkages are depicted in red while the blue arcs 
indicate simple paradigmatic relationships. These colorings 
have no formal significance; I use them only to clarify the 
diagram. 
 
In the object domain we have represented a ball, which is 
green, round, and wooden, and a brick, which is red, 
rectangular, and made of stone. The objects are linked to 
their constituent elements through ‘and’ relations. These 
objects are also linked to 0 through an ‘or’ relation. Notice 
that 0 is also linked the 0-nodes for the constituent domains. 
That linkage among 0-nodes is assignment. 
 
[It is not obvious to me what this linkage among frame nodes 
means in terms of the connectivity in the underlying neural 
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nets. Which neurons are firing at frame depends, of course, on 
what the stressor is.] 
 
Think of the structures depicted in Figure 3 as being of the 
sensorimotor degree; they are perceptual in nature. Figure 4 
adds language into the mix and depicts a bit of the systemic 
degree: 
 

 
 

Figure 4: Some Simple Concepts 
 
At the lower left we have the partitions for objects, color, 
and materials (I dropped shape to simplify the diagram). At 
the lower right we have the lexicon, containing word forms for 
/object/, /color/, and /stuff/. At the top we have a fragment 
of the systemic cognitive network where we see attractors for 
three elementary concepts. The meaning of those concepts, of 
course, is a function of their location in the relational 
attractor net. Notice that each is linked to a lexical 
attractor on the one hand, and the frame states of the 
perceptual domains on the other hand.  
 
We can gloss the significance of these relationships in this 
way: Any attractor in the material domain can be designated by 
the lexical item /stuff/. And so on for the other perceptual 
domains the corresponding lexical items. Of course, each 
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perceptual attractor may also be designated by more specific 
lexical items (/stone/, wood/, etc.), but that is not depicted 
in this diagram. Notice that these conceptual or-relations 
function in the same way as those used in building the dog and 
animal paradigm in previous notes. 

Abstraction and Process 
The systemic degree is said to be higher than the sensorimotor 
degree. This is an asymmetrical relationship, one, I believe, 
that is comparable to the different strata in Lamb’s 
stratificational grammar. In Lamb’s theory, items on a lower 
stratum are said to realize items from a higher stratum. Thus, 
a perceptual dog can be said to realize C-dog, but also C-
beast, or even C-animal. 
 
In the formulation of Cognitive Structures, higher degrees 
perform various “services” for lower degrees. But they also 
abstract over the contents of those degrees. In fact, this is 
the key to their services. 
 
What does it mean for a systemic C-node to be linked to the 
0-state of some sensorimotor partition (or domain)? It means 
that that C-node can be aroused by any of active attractor in 
that partition. The C-node is thus an abstraction over the 
attractors in that partition. That the C-node is or-ed to a 
lexeme allows the lexeme to “fix” the attractor in the 
network. [Now what does that mean?] Without this “fixing” the 
C-node would have no content at all. We can imagine that when, 
for example, the /color/ lexeme arouses it’s corresponding C-
node (because you heard someone utter the word), it also 
activates the color partition. If you will, it stresses the 
partition “from above.” As a result, one now seeks to identify 
the most salient color in the visual focus. That is, one seeks 
to develop an attractor in the color partition. When one 
emerges, the color partition is at it’s 0-state with an active 
attractor now arouses the appropriate lexeme: “it’s blue.”  
 
Thus we can begin to see how the various processes from 
Cognitive Structures might happen, and how the whole network 
has a servomechanical cast to it. 
 
I imagine that shifting partitions from one mode to another – 
“stressing from above” etc. – is often chemically mediated. 
One chemical process might be equivalent to varying the 
temperature parameter in simulated annealing. [I wonder what 
the chemical signature of frame is?] In a large vertebrate 
nervous system this would be mediated by the reticular core.  
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V Brief Notes 

Alternative Interpretation 
 
Consider a homogeneous net: 
 

a1 a2 a3

0

 
 

 
We can interpret nodes a1, a2, and a3 as representing three 
“neural holograms” stored in the neural net. Node 0 is then 
the mesoscopic patch of neuropil containing those holograms. 
 

Partitioned Net 
 
This is a revision of an earlier diagram. 
 

A B
a1 a2 a3

0

b1 b2

0 0

 
 

This diagram asserts that both a2 and b1 are required. 
 
In that earlier diagram (Figure 3 of the partitioned nets 
discussion under Simple Animal) the and-node was connected 
directly to the outputs of the or-nodes. That too is 
meaningful, but the meaning is different. That asserts that 
some attractor in A and some attractor in B is required.  
 



Page 30 

That construction might be useful in stating syntactic 
requirements in a pattern where A and B make contributions. 
The construction immediately above can be used to assert some 
specific assertion over A and B. 
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VI Consciousness and Control 
 
The topology of attractor nets is the structure of 
consciousness and control. Because an attractor net is 
constructed of logical relations (OR, AND) it is a control 
structure. As control is dispersed throughout the net, there 
is no need for a separate executive. 

Consciousness 
Freeman has suggested that consciousness: 
 

1) is organized in hemisphere-wide global states 
 
2) these states occur in discontinuous frames (the 
analogy is to motion pictures, not the AI notion) 
 
3) the frame-rate is roughly 10Hz for a resting state and 
7Hz when one is actively engaged in a task 

 
He has also suggested that consciousness functions in the 
manner of Baars’ so-called global workspace. 
 
In my current view, then, the so-called cognitive unconscious 
involves those processes that are internal to a partition, to 
a mesoscopic patch of neuropile. Consciousness involves 
switching between and among active attractors of mesoscopic 
patches. 

Operators 
Control requires logic. Lamb uses four logical operators, 
ordered and unordered AND, ordered and unordered OR. The 
operators can take more than two arguments. 
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Selection: Unordered OR 

unordered-OR

 
 
In Lamb’s notation, relations are ordered or unordered. The 
ordering is temporal. Ordered relations require their 
arguments to be filled in temporal sequence. Unordered 
relations do not. 
 
The basic use of the unordered-or relation is to indicate 
competing attractors in a net partition. When the partition 
incurs stress, its state will evolve along a trajectory until 
it arrives in an attractor basin. That trajectory will involve 
a number of bifurcations. The exact pattern of bifurcations 
will depend on the local circumstances. The details of these 
trajectories are invisible at the level of attractor logic and 
irrelevant to it. What matters is the attractor that has been 
activated, not detailed itinerary that led to that activation. 
 

Selection: Ordered OR 

ordered-OR

 
 
Lamb uses ordered-or to assert priority among acceptable 
alternatives: use the first one possible. One could use this, 
for example to represent salience, as in the bird paradigm, 
where the robin is the most salient kind of bird (at least for 
a certain population). 
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Combination: Unordered AND 

unordered-AND

 
 
The basic use of unordered-and is to indicate the strong 
codependency of particular attractors in different partitions. 
In the terms of the so-called binding problem in neuroscience, 
these attractors are bound to one another. They can be, are, 
or should be activated in the same frame of consciousness. 
 

Combination: Ordered AND 

ordered-AND

 
 
Where attractors are linked by ordered-and, they should be 
activated in the indicated order.  
 
Ordered-and can be used for attractors in different partitions 
and for attractors in the same partition. Unordered-and cannot 
be used for attractors in the same partition for attractors 
cannot be co-activated in the same partition.  
 
Where it is the case that attractors within the same partition 
keep being activated in succession, the partition might 
differentiate into two partitions. Whether or not this can 
happen will depend, at least in part, on whether or not the 
co-activated attractors can be divided into two (or more) 
disjoint sets such that co-activation occurs only between 
members of different sets.  
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One can imagine building a behavioral sequence by using a 
string of ordered AND’s co-resident in a single partition: 
 

0 0 0 0

 
 
As intermediate attractors are connected before and aft we do 
not need any other structure to bind the sequence into a 
single unit. As depicted, however, the sequence will play out 
only from beginning to end. There is no intermediate entry 
point nor, for that matter, any intermediate stop, There is 
evidence that some behavioral patterns are, in fact, sequenced 
in this way. 
 
I don’t know whether or not there are any patches of neural 
tissue that function like this. It is one way to get the job 
done, and it is a job that the nervous system needs to 
perform.  
 
For this to be a plausible scheme we need to have a reasonable 
interpretation of the attractor nodes in the above diagram. I 
would not necessarily expect them to have any explicit 
content. What we care about is that one seems to trigger the 
next one in the sequence. Think of a chain that advances one 
link at a time with each cycle of an oscillator. Perhaps the 
hippocampus (and related structures) directs the creation of 
these “links.” In the rat these links are associated with 
positions in physical space, hence the hippocampus is 
conceived of as a cognitive map. In humans the links can be 
associated with almost anything. When the hippocampus is 
destroyed, the brain cannot create any new links. Thus, no new 
episodes, no new memories. The old links are still there and 
function as always, but that’s it. Such links are thus a 
prerequisite for episodic structure. Their use, however, does 
not itself constitute episodic structure. Episodic structure 
implies storing “records” of episodes; one can remember paths 
through the environment without storing episodes. 
 
I note that there are artificial neural nets that learn 
sequences. I do not know whether or not they do it like this. 
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One can imagine building more complex arrangements as well, 
for example: 
 

0

0

 
 

Comment on Sequence and Control 
 
Lamb presents sequencing constructions in Pathways of the 
Brain that are quite different from the concatenated ordered-
ANDs I just used. At the moment I think the above 
constructions are sufficient, but, of course, I do not know 
that. If these somewhat simpler constructions are, in fact, 
adequate, that may be due to the rather different 
interpretation I place on the underlying neural activity.  
 
I note further that, if these constructions are adequate, then 
the system has no need for a separate executive controller. 
The topological structure of the attractor net is itself a 
control structure. Because temporal activity is inherent in 
the basic processes of neural nets there is no need for any 
external system to “drive” activity forward. 
 
Control is self-organizing and emergent. 

Flow of Control 
The system manages by exception. A control system (cf. Powers) 
pays attention to the difference between its actual input and 
its expected input. Freeman’s account of the limbic generation 
of preafference implies that the nervous does just that. So 
let us think of this system as a Powers stack. The depth of 
the physical stack is set by neuroanatomy. But the power of 
recursive abstraction allows the depth of control to be 
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extended to indefinitely many effective levels. As I have not 
developed this notion, I’ll say no more about it at present. 
 
The system has on the order of 1000s of partitions. Think of 
them as supplying reference levels for some servo in the stack 
each working to resolve the difference between expected 
downstream input and actual downstream input. Where the 
difference cannot be resolved we have an error. Persistent 
error will “draw” a partition’s activity into a frame of 
consciousness.  
 
Conscious problem solving employs the sorts of processes Hays 
discussed in chapters 9 and 11 of CogStruct. Successive frames 
of consciousness execute successive steps in the appropriate 
process until one of three things happens: 
 

1) the problem is solved 
 
2) the task is abandoned without solution 
 
3) reorganization (learning) takes place that allows a 
solution 

 
In general, such a system works to solve problems at as low a 
level as possible. The lower the level, the more local the 
solution, and the more easily it is found. If a low level 
solution is not possible, then control must percolate up the 
stack where more resources are available. 
 
Caveat 1: Problem-solving is not the only thing such a system 
does. Take musical performance. The performance is best when 
there are no problems whatever. Low-level problems, in 
contrast, threaten utter disaster. You do not want to be 
consciously thinking about what your fingers should be doing, 
etc. Etc. 
 
Caveat 2: Note the mobility of consciousness as implied by the 
ordinary notion of the stream of consciousness. The mind often 
flits from thing to thing. The brain is capable of 
interleaving different streams of conscious activity in the 
same time interval. 



Page 37 

 

 

 
 

VII Minds in Nets 

Introduction 
The notes in this section more or less complete the 
preliminary phase of these investigations. Appropriately 
enough, these remarks conclude with a definition of mind. 
Obviously a great deal more needs to be done, but these ideas 
seem pretty much to “close” the conceptual space.  
 
In this section I want to discuss the general properties of A-
nets, while interspersing this discussion with comments on 
Freeman’s work on perception, his work on consciousness, and 
on other matters as appropriate.  

System Dimensionality 
What’s the dimensionality of an attractor net? 
 
We have several things to think about: 
 

1. The brain considered as a more or less homogenous lump 
of tissue. 
 
2. The cortex itself. 
 
3. The connectivity of the neural net. 
 
4. The dimensionality of the net’s state space. 
 
5. The dimensionality of the attractor space. 

 
(1) Considered as a lump of tissue, the brain is a complex 
form in 3D space. 
 
(2) The cortex itself may be thought of as a 2D sheet that has 
been crumpled up to fit into the 3D cranial cavity. Much of 
the neural structure that interests us in laid out on this 
sheet. In particular, most of the partitions in the neural net 
can be thought of as a tessellation on this surface. 
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Note, however, that the functional tessellations do not seem 
to be rigidly fixed long-term structures. Work on cortical 
plasticity indicates that on the scale of hours or more these 
boundaries are labile. This is two or more orders of magnitude 
greater than the time scale of basic sensory, motor, and 
cognitive processes and so we may, for the purposes of 
analyzing those functions, consider the functional geometry to 
be fixed. Further we must consider the changes induced by 
changes in the neurochemical milieu, which can happen on the 
scale of seconds to minutes. One can imagine, in the abstract, 
that the tessellation pattern might vary appreciably from one 
neurochemical regime to another. 
 
In these notes I am primarily concerned with neural processes 
taking place on a scale of milliseconds to seconds and 
minutes. Thus, with the exception of changes induced by 
learning, I am going to ignore these aspects of the neural 
network’s fluidity. Thinking of A-nets as a general formalism, 
this suggests a distinction between stationary and fluid A-
nets, where fluidity has to do with the stability of the 
network topology over time at a scale some orders of magnitude 
larger than the scale of basic A-net state transitions. For a 
network to be fluid either the underlying neural net must have 
the capacity for growth and development or there must be an 
external agency guiding the change. Animal nervous systems are 
obviously A-nets of the former kind. These issues must be 
addressed at some time. 
 
(3) The neural net may have a connectivity arrayed in more 
than 3 dimensions (cf. V. Braitenberg, Vehicles, 1984, pp. 39 
ff.). I’m not sure how important this dimensionality is. What 
is surely important is the small world topology of the net. 
 
Neural nets may be of various degrees, in the language of 
Benzon and Hays, “Principles and Development of Natural 
Intelligence.” Journal of Social and Biological Systems 11, 
293 - 322, 1988. This has to do with details of the small 
world topology of these nets. In this sense, the human nervous 
system is of degree five while all other animals are of lesser 
degree. It would seem that a system with physical connectivity 
of degree five is unbounded in a way that is uncharacteristic 
of systems with lesser connectivity. For example, such systems 
are capable of cultural evolution. I will have to leave this 
for a later discussion.  
 
Almost all of the constructions in these notes are of the 
first three degrees (modal, sensorimotor, and system) and do 
not involve the two highest (episodic and gnomonic). This does 



Page 39 

not affect that basic matters at issue in these notes – the 
basic nature A-nets – but is obviously something that must be 
dealt with later on. I note that, inherent in this discussion, 
is the notion that structures of all degrees are constituted 
by the same kinds of basic process, The difference between a 
partition of degree two and one of degree five, for example, 
has nothing to with the nature of underlying neural substrate 
and its processes. The difference is a function of the 
location of the partition in the overall neural net.  
 
(4) Regardless, the dimensionality of the neural net’s state 
space is, for all practical purposes, infinite. This is true 
regardless of the net’s degree. This dimensionality is 
strictly a matter of the nature of individual neurons and of 
the large number of them constituting real nervous systems.  
 
This leaves us with the attractor net. 

Dimensionality of the Attractor Net 
The fact that the system’s overall attractor landscape is a 
very complex surface in the state space doesn’t necessarily 
mean that the attractor landscape is of the same 
dimensionality. By analogy, the cortex is a complex 3D volume 
of tissue, but its surface is 2D. I’m suggesting that the 
surface whose points consist only of the system’s attractors 
is of (considerably) lower dimensionality than the state 
space. 
 
Consider a single partition of the net independently of all 
others. At any moment it is in one of three conditions: 
 

1. at some attractor,  
 
2. moving on a trajectory toward an attractor, or  
 
3. in a trajectory moving erratically in state space and 
not likely to settle into any attractor basin.  

 
The first is what interests me. The attractors are mutually 
exclusive. Let us map them to the positive integers, thus 
suggesting that a single partition has a 1D attractor 
geometry. We might, for example, number the attractors 
according to the order in which they were first formed in the 
partition. 
 
In situation 1 (above) the logical structure of this 1D 
attractor space is simple: exclusive OR. I leave the other two 
situations as exercises for some later date; this looks like 
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some kind of fuzzy logic may be called for. 
 
Now let us consider two partitions coupled together so that 
neither can be at frame unless both are. How many dimensions 
does this system have? If they were independent of one 
another, then it would have two dimensions. But they are not 
independent. Hence it must have less than two dimensions. 
However, since either one alone has one dimension, I conclude 
that the dimensionality (K) of two coupled partitions is 
 

1 < K < 2 
 

In this case K has a fractional value. The logical structure 
of this K-dimensional attractor space requires AND relations 
over the attractors in the two partitions. [It is my 
understanding that fractional dimensionality does not 
necessarily imply fractal dimensionality. Nor, I should add, 
is it immediately obvious to me that K must be greater than 1; 
perhaps it can assume a fractional value between 0 and 1. I am 
not prepared to reason further on this.] 
 

Upon reflection: That argument seems a bit abrupt. It is surely not 
adequate nor do I know how to make an adequate one. 
 
In general, it seems unlikely to me that any given attractor in one 
partition is compatible with any of the attractors in the other. If 
that were the case, however, then I would not hesitate to say that 
the 2-partition system had a dimensionality of 2. That is one 
extreme case. 
 
But that seems unlikely to occur in reality. There are going to be 
mutual constraints on the attractors. Let us assume that partition A 
and B have the same number of attractors. has as many or more 
attractors that does partition B. In the extreme we might imagine 
that for each attractor in A there is only one attractor in B. That 
suggests a dimensionality of 1 for the coupled system. And if you 
buy that . . . . then a more flexible coupling would admit of a 
higher dimensionality, but not a dimensionality of 2. 
 
What happens, however, when one partition has more attractors than 
the other? Either some attractors in one partition will be mapped 
onto more than one attractor in the other or some attractors in one 
will not be compatible with any in the other. In this last case 
(which strikes me as one approach to thinking about psychopathology) 
does the system dimensionality drop below 1? 
 
So, perhaps it is the case that the dimensionality is between 1 and 
2. 
 
For now, let us continue as before . . . . 
 

 
The dimensionality of the attractor net for a neural net with 
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N partitions is 
 
  1 < K < N 
 
K may have an integer value or it may be fractional, as it in 
the case where N = 2. The existence of a system 
dimensionality, K, that is less than the number of partitions 
in the system, N, is evidence of dependencies among the 
elements in the underlying neural net.  
 
My guess is that the human brain has on the order of 1,000 to 
10,000 NFAs, or partitions. The dimensionality of the 
attractor net is thus less than 10,000. It may in fact be 
considerably less, maybe on the order of 100 or of 10; I don’t 
know. I do have some small reason to suspect that the A-net 
dimensionality is closer to 10 than to 100.[3] Still, as these 
things go, a dimensionality on the order of 10 is still way 
beyond anything we can visualize, and it is more than what 
Haken has in mind when he remarks that the key to 
understanding systems of very high dimensionality is to find 
low dimensional phenomena within them. But it’s still 
considerably less than the unbounded dimensionality of the 
state space itself. 

Process 
On the basis of Freeman’s current work on consciousness, let 
us assume that the underlying neural net is set-up so that the 
A-net can be said to move from one state to another in 
discrete jumps. This does not, of course, imply that the 
underlying neural net itself operates discretely. It is the A-
net that is discrete, not the neural net. [Thus we have the 

                                                
3 My suspicion is based on the graphs we used back in the Twin Willows 
sessions in Buffalo in the late 1970s. We have four basic edge types in 
the systemic degree: VAR, SYN, CMP, and ASN. Sub-graphs consisting of only 
a single arc type had to be trees. We can thus see that four systemic arc 
types corresponds to four dimensions. We had two other cognitive degrees, 
episodic and gnomonic, and they had the same four arc types. If we add a 
dimension each for the other degrees that brings us to six dimensions. We 
also have to add a dimension for the sensorimotor network; that gives us 
seven dimensions. Whether or not this reasoning is valid in this context 
is not something I can determine at the moment. 
 
This suggests the possibility that the dimensionality of the A-net is, on 
the whole, relatively high. But for any given task, the A-net “collapses” 
into a low-dimensional net tailored to the task. (Perhaps it is assignment 
structure that take the lead in structuring the collapsed net.) Here we 
have the domain specificity of the evolutionary psychologists. But, 
instead of a fixed repertoire of genetically engineered “mental modules” 
we have a mechanism for creating an unbounded number and variety of task-
specific A-nets on demand. 
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same dual analog-digital nature found in the neuron itself.]  
 
Now let us consider Freeman’s work on olfaction. He finds that 
the AM wave forms diagnostic of a given odorant change from 
one occasion to the next though they seem to have a basic 
family resemblance. The (rather small) portion of the cortical 
surface that Freeman monitors (for EEG) is, of course, 
connected to the rest of the brain. The odorant may be the 
same from occasion to occasion, and elicit the same peripheral 
activity in the sensors, but the overall neural context varies 
from occasion to occasion. Let us take that to indicate that 
the microscale activity of some NFA (neuro-functional area) in 
one of its attractor basins varies depending on the state of 
the other NFAs. That is to say, for each attractor within a 
partition, there are a variety of microscale states compatible 
with that attractor. Some of this variability can be 
attributed to the influence of other NFAs to which a given NFA 
is coupled. 
 
Let us characterize the momentary state of the A-net by a 
state vector with one value for each partition in the net. 
With each state transition, the value of any position in the 
state vector can change form one attractor to another. There 
are at least two types of state vectors: frame vectors and 
transit vectors. 
 
Let us imagine the brain is in a state where each partition is 
at frame; that is each partition is in one of its attractor 
basins. That state is an F—vector. What happens when we stress 
one of the partitions so that it is no longer at frame? That 
is, it is no longer in one of its basins of attraction. 
 
What state is the A-net in now? That, it seems to me, is in 
some sense indeterminate. We can perfectly well characterize 
the state of the underlying neural net, but the state of the 
A-net as a whole is indeterminate. If we assign integer values 
to each attractor in the partition, and use those values for 
the A-net’s state vector, how do we characterize the A-net’s 
state when some one or many elements in the vector do not have 
integer values? What kind of values do they have?  
 
In such a state, where one or more partitions is not at frame, 
we might say that the A-net is on a trajectory away from some 
one F-vector and toward another one. But there’s no way to 
tell which one until it arrives there. After all, the 
partition could be anywhere in the state space of its 
underlying neural net. Being not-at-frame is a rather fuzzy 
and open-ended matter. 
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I figure that when one partition is knocked from frame, it 
will act so as to put stress on partitions to which it is 
closely connected. It is thus possible that they will, in 
turn, disturb other partitions and so on until the entire 
attractor net is thrashing about without ever settling into 
another F-vector. It is also possible that the original 
disturbed partition will return to frame at the same or a 
different attractor and leave the other partitions 
unperturbed. One cannot tell. 
 
In general, however, I suspect that at any given moment some 
considerable group of partitions is at frame while the rest 
are not. The A-net’s state vector at such moments thus has 
determinate values for many of its places, but not for all. 
Let us call such a vector a T-vector (transit vector). It 
seems reasonable to suppose that, on a time scale of minutes 
to hours, the brain spends much of its time moving from one T-
vector to another. One can even imagine that the brain might 
become locked into some particular collection of T-vectors 
such that it never moves to any F-vector but simply keeps 
jumping around in the circuit.  
 
[Q.: Is there a relationship between the fractional 
dimensionality of the A-net and the possibility of having its 
state defined by T-vectors?] 
 
That is to say, there’s no reason why there can’t be more or 
less stable circuits of T-vectors. Or that a person can’t jump 
around between two or more such circuits. (In the back of my 
mind I’m now thinking about anxiety and psychopathology.)   
 
Further, we must consider the fact that people are normally 
open to the world. We experience things, sense them, move 
about. All this has various effects on the attractor net. An 
unexpected sight will knock some partitions from frame while a 
sought-after ice cream cone, for example, will allow others to 
return to frame. And so forth. 

Dreams & Flow 
Given all this, one might wonder whether or not the system is 
ever at frame and whether or not there is ever a regime in 
which it moves from one F-vector to another, moment by moment 
by moment. I suggest that the answer to both questions is 
“yes,” more or less. 
 
Consider REM sleep. During sleep the brain is all but 
disconnected from the external world. Some parts of the 
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nervous system are almost totally shut down. In REM, I 
suggest, the brain goes from one F-vector to another and can 
do so mostly because it is unconstrained by having to deal 
with the external world.  
 
Notice that the brain is not, however, totally disconnected. 
If there is a sudden loud noise, for example, the system will 
instantly jerk to a new mode. The person will be awake and 
wondering what’s going on. 
 
OK that’s during sleep. Is there any time that one moves from 
F-vector to F-vector while awake? That, I suggest, is what 
expressive culture is about, whether individually or 
collectively. When one is able to do this, that is flow, that 
is pleasure. The arts exist expressly to allow extended 
periods the A-not simply flows from one F-vector to another. 
 
Consider Csikszentmihalyi on flow. He defines flow as a 
relationship between task difficulty and skill level (see 
Figure 1 below). If a task exceeds one's abilities by a large 
degree, one will be anxious. In the current model I take that 
to mean many T-vectors with a large percentage of the items in 
the vector being indeterminate; their partitions cannot reach 
frame. If one's abilities exceed task demands by a large 
degree, one will be bored – frame all around, ho hum. However, 
when task demands and abilities are well-matched, the task is 
interesting, and one performs it in a state of pleasant and 
absorbed flow – just enough tension in the system to give it a 
good ride. 
 

Anxiety

  Flow 

BoredomSkill Level

Task
Difficulty

 
Figure 1: Flow 
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Given this relationship between demand and ability, it is 
obvious that, as we set about adding a skill to our 
repertoire, performing the ever-more familiar task will cease 
to engender flow and instead engender boredom. To regain that 
pleasing sense of flow we must set ourselves a more difficult 
task, one which challenges our ever-enlarging skill set. 
 
Notice further that flow does seem to require some resistance; 
there has to be a challenge. Thus the flow experience cannot 
consist complete of F-vectors moment after moment. I suspect 
that some T-vectors are needed to trigger the more 
sophisticated cognitive and motor systems, which normally 
would come into play only when lower level systems cannot 
adequately cope. I further suspect, based on my experience as 
an improviser, that perturbations at high-level systems can be 
corrected by low-level changes – but that discussion requires 
more attention than is appropriate here.  

Behavioral Mode 
Finally, we need to think about behavioral mode in McCulloch’s 
sense. He suggests that the brain as a whole is in one or 
another distinctly different behavioral mode during a given 
period of time; this is an aspect of the A-nets fluidity. It 
is not clear to me just how this affects the overall picture 
I’ve been presenting. It suggests that we need to think in 
terms of several different but related A-nets, one for each 
behavioral mode. What’s the relationship between these 
different mode-specific A-nets? Do they correspond to the same 
underlying partitions or not? Etc. These strike as me both 
extremely important and extremely thorny questions. I want to 
leave most of that general discussion for later. But I would 
like to introduce say a bit more about mode in general and 
then discuss learning. 
 
McCulloch suggested that the whole neuro-behavioral show is 
being “run from below” by the most primitive parts of the 
brain, by the reticular formation and its closely related 
structures. The RF has reciprocal connections throughout the 
brain and its various nuclei produce and distribute many 
(most, all?) of the neuromodulators so important to brain 
activity. The RF also has fairly quick and direct access to 
both the gut and the external world. In McCulloch’s view the 
RF evaluated the join significance of the inner and outer 
state and, on that basis, committed the organism to this or 
that behavioral mode – such a feeding, exploration, courtship, 
sleep, and so forth. 
 
Let us say that a mode vector contains an argument for each 
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partition in the A-net. That argument specifies the 
concentration of neurochemicals characteristic of each mode 
(at least those chemicals under control of the RF). When the 
RF has determined the most appropriate mode for the moment, it 
“calls up” the appropriate mode vector and configures the 
whole system to operate in the required mode. Each partition 
is parameterized and the RF regulates the overall behavioral 
characteristics of the system by adjusting those parameters. 

Learning 
Now we must consider learning. How does the A-net acquire new 
attractors? Through what mechanism does the A-net topology 
change on a time scale of hours to days, perhaps up through a 
life time? 
  
[Here I’m thinking in terms of Wm Powers’ discussion of 
reorganization in Behavior: The Control of Perception. But I 
will not review that discussion here.] 
 
Let us imagine that some partition is thrashing about in a 
state of high stress. What would happen if we “spritzed” some 
neurochemicals into the distressed partition that then allowed 
it to assume different states, that changed the connectivity 
between the partition’s neurons? Let us imagine that, in this 
situation, the partition’s state continues to evolve but that 
its trajectory is no longer oscillating out of control. 
Instead it arrives at frame. At that point we give it a spritz 
with a different chemical and the spritz “fixes” the active 
synaptic states of the currently active neurons. The system 
has, in fact, learned something. It as acquired a new 
attractor. Henceforth the situation that had driven it to 
distraction on this occasion will no longer do so. Rather, it 
will drive the partition to its new attractor. 
 
There is just one problem with this scenario – or, at any 
rate, one problem that is worse than any of the others – just 
who is this “we” who is doing this spritzing and how does it 
know to do it? For we DO NOT want to invoke a deus ex machina, 
a homunculus, to keep the whole shebang running. 
 
I suggest that these are matters of behavioral mode and so are 
under the “sub rosa” regulation of the RF. It can somehow 
sense the state of some hunk of cortical tissue and influence 
that state by altering its chemical ambiance. 
 
How would it sense cortical state? I have two suggestions, 
with no evidence I’m aware of to offer for either one: 
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1.) chemical sensitivity 
 
2.) rhythm 

 
Chemical sensitivity would have to work through connections 
from the cortex to the RF. The cortical afferents from some 
partition to the RF would, by their activity (high or low), 
signal the chemical state of that partition. Depending on that 
signal the RF could then deliver chemicals to that area. Here 
I’m assuming that a partition in distress would begin to 
deplete its compliment of critical modulators and somehow 
signal that to the RF. This doesn’t strike me as being very 
plausible. 
 
The other possibility is that the RF is sensitive to rhythmic 
activity of all sorts. As I have described it, a cortical 
region under tension would have a different signature from one 
under stress, and a region in active distress would have still 
a different signature. These patterns would be automatically 
conveyed to the RF via cortico-RF efferents. The RF would 
“dispense” chemicals as needed. I like this suggestion a bit 
better. If a one neural net cannot be exquisitely sensitive to 
the rhythms in another neural net, then just what CAN it do? 
 
In either case, I’m assuming a topic mapping between RF 
structures and cortical areas such that fibers from cortex to 
RF are closely coupled with RF to cortex fibers projecting 
back to the same region. This seems like a plausible 
arrangement to me. We certainly don’t want some RF-homunculus 
having to give routing instructions to its efferent neurons. 
 
Finally, I note that among the simpler animals we find many 
that are rhythm virtuosi. They wriggle and sway and flap and 
buzz and swim, etc. These creatures are our evolutionary 
precursors.  
 
[If dream states move from one F-vector to another, what does 
that imply about the role of dreams? How does this facilitate 
the consolidation of new knowledge, of memories?]  

Comments on Freeman 

Consciousness 
 
Freeman tells me that consciousness moves from frame to frame 
in discrete jumps. In the terms of this discussion, it is 
moving from one A-net state-vector to another. I suspect what 
the fMRI “hot-spot” folks are seeing are regions where the 
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partitions are not at frame. The system as a whole is under 
stress, with most of the stress being concentrated in certain 
areas. So, those areas need more energy, yadda yadda yadda, 
and show up in the fMRI images as having more activity than 
other areas. But those other areas are not dead, they are just 
more or less at frame.  
 
One would like to see the relationship between activity as 
measured by fMRI and consciousness as revealed by Freeman’s 
EEG analysis. 
 
One would also like to see what Freeman’s techniques reveal 
about sleep states, in particular, REM sleep. Does REM sleep 
jerk from frame to frame the way waking states do? – think of 
the saccades that are the tell-tale clue to the presence of 
REM sleep. The possibility of lucid dreams suggests this is 
likely. What about non-REM sleep states? 
 
Freeman notes that the frame rate is faster when, in effect, 
the system is under low stress, than when it is stressed. 

Learning 
 
Freeman presents evidence that new attractors arise through a 
process of differentiation such that, with the emergence of a 
new attractor to an NFA, all of the attractors in the NFA are 
somewhat altered. This is consistent with other evidence of 
various sorts. 
 
The following diagram depicts the process. At the top (T1) we 
have an NFA in its pristine state: it has no attractors and no 
attractor basins. Once the NFA has learned to discriminate one 
pattern from the background, an attractor forms (T2, second 
from the top).  
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T1

T2

T3

T4

 
Learning: Attractor Basins Bifurcate 

 
Then another discrimination is acquired and we see two 
attractor basins (T3) in the NFA. At a later date one of 
these, in turn, differentiates into two attractors (T4) as 
another discrimination is learned. 
 
Notice, in the first place, that this developmental process 
provides a rationale for mapping NFA’s attractors to the 
positive integers. An attractor is simply assigned the ordinal 
number appropriate to its developmental order (there is a 
small problem here in that one has to decide which of two 
daughter attractors retains the number of the parent 
attractor; this seems to me a rather small problem). 
 
In the second place, notice that this pattern of development 
displays a bifurcation structure similar to that of biological 
development – I’m thinking here of Waddington’s epigenetic 
landscape. 
 
It will be interesting to see how well this conception is born 
out in the developmental literature. 
 
 

Dendritic growth and pruning vs. Hebbian learning: By way 
of an approach I observe that the former has the effect, 
first, of increasing the dimensionality of the neural net 
and then of decreasing it under environmental influence. 
Perhaps we can think of this guided pruning as 
diagonalizing through the net space, thus reducing its 
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dimensionality and giving us a “coherent” (i.e. now 
functionally specialized) NFA in which attractors can form 
through Hebbian learning. 

 
 

Learning and Completeness: Is it possible to construct an 
A-net sufficiently powerful that it is, shall we say, 
Gödel-complete?  
 
Once one has discovered a Gödel-axiom that is not in the 
system, one can simply add it to the system. There will, of 
course, always be other such axioms, and they can be added 
in time. With ordinary systems the discovery of G-axioms 
and their addition to the system is to be done from outside 
the system. That is not necessary for a sufficiently 
powerful A-net. These axioms can be noted as they arise and 
then added to the system.  
 
Note that this has the effect of making extension in time 
intrinsic to the system. Time is not just some homogeneous 
“medium” in which events happen and are ordered. It is a 
resource available to the system. 

Society and Culture 
Humans are, as they say, social creatures. We are not isolated 
Cartesian nervous systems. The most important aspect of an 
individual’s environment is those other people with whom that 
individual interacts. In Beethoven’s Anvil I have made the 
case for the importance of rhythmically coupled interaction. I 
need not repeat that here. I simply note that when individuals 
are closely coupled with one another the effect is to bring 
their two nervous systems into the same dynamic regime.  
 
Without this coupling all of the things we think of as being 
uniquely human would be impossible. But we should not, 
therefore, think that we can understand human society as one 
big collective A-net. That is not the case. 
 
To be sure, I did argue that, in certain circumstances, we can 
think of a group as having a single mind. I still believe that 
to be the case. But those circumstances are special and we 
need to understand how they work, and how groups move to and 
from such states. That is a different matter entirely. 
 
As Freeman has argued, we are unique individuals and our 
experience has meaning and significance that is unique to each 
individual and which is utterly private. The structure and 
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contents of one’s attractor net is open to the population. All 
of symbolic culture has to do with the attractor nets of the 
individuals in a given society. This is where we need to begin 
thinking about cultural evolution and of gene-like elements in 
that evolution. It is these gene-like elements that allow 
social processes to bring about convergence among the A-nets 
of individual members of society. 
 
We can thus think of cultural evolution as taking place in the 
A—nets of some population of individuals. Interaction among 
these individuals places mutual constraints upon the content 
and structure of their individual A—nets. It is somewhere 
between unlikely and impossible that any two individuals will 
ever have the A-nets that are exactly the same, even identical 
twins raised together in a small-scale society. But the A—nets 
of individuals within a culture must share a strong “family 
resemblance” if they are to interact with one another in a 
mutually beneficial fashion. 

Mind: A Definition 
It has been said that the mind is what the brain does. I do 
believe that. But I also believe that the value of that 
assertion depends on just what one thinks that the brain is 
doing. If one thinks that the brain is processing data in the 
manner of digital computers, then the assertion has little 
value, a tends to be identified with a belief in mental 
modules. The current approach is quite different. 
 
By way of conclusion I offer the following definition: 
 

A MIND is a fluid attractor net of fractional 
dimensionality over a neural net whose behavior 
displays complex dynamics in a state space of 
unbounded dimensionality. The A-net moves from one 
discrete state (frame) to another while the 
underlying neural net moves continuously through its 
state space.  

 
Notice that this definition does not presuppose that only 
humans have minds. Other animals can, by this account, have 
minds as well. One can imagine classifying minds by the 
topology of their A-nets. (Cf. Benzon, W. L. and D. G. Hays 
(1988). "Principles and Development of Natural Intelligence." 
Journal of Social and Biological Structures 11: 293-322.) 
 
Finally, just as neural nets are used to model non-neural 
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phenomena, so A-nets might well be used to model phenomena 
other than the behavior of nervous systems. I would think, for 
example, that they would be useful in considering biological 
systems, whether it be the properties of an ecosystem or the 
development of organisms from germ cells to adult forms. This 
does not, however, necessarily imply that these other 
phenomena are mental in nature. 
 
 
 
  


